海星:部分文献引用情况

诺扬生物
2025-06-13

HyCyte® 干细胞/细胞系产品高分文献

1. HyCyte®大鼠骨髓间充质干细胞三系分化试剂盒:影响因子18.9

Sun J, Yang F, Wang L, et al. Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration[J]. Bioactive Materials, 2023, 23: 247-260.


2. HyCyte®SD大鼠脂肪间充质干细胞:影响因子18.9

Ning X, Liu N, Sun T, et al. Promotion of adipose stem cell transplantation using GelMA hydrogel reinforced by PLCL/ADM short nanofibers[J]. Biomedical Materials, 2023, 18(6): 065003.


3. HyCyte®SD大鼠脂肪间充质干细胞三系分化试剂盒:影响因子18.9

Wei X, Wang L, Duan C, et al. Cardiac patches made of brown adipose-derived stem cell sheets and conductive electrospun nanofibers restore infarcted heart for ischemic myocardial infarction[J]. Bioactive Materials, 2023, 27: 271-287.


4. HyCyte®干细胞细胞产品:影响因子为18.9

Ma C, Qi X, Wei Y F, et al. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles[J]. Bioactive materials, 2023, 19: 139-154.


5. HyCyte®细胞产品(MLE-12):影响因子为18.5

Lu Q, Chen R, Zeng F, et al. Inhalation of Bioorthogonal Gene‐Editable Spiky‐Pollen Reprograms Tumor‐Associated Macrophages for Lung Cancer Immunotherapy[J]. Advanced Functional Materials, 2024: 2408767.

6.HyCyte®细胞产品(4T1):影响因子为18

Wang Z, Sha T, Li J, et al. Turning foes to friends: Advanced “in situ nanovaccine” with dual immunoregulation for enhanced immunotherapy of metastatic triple-negative breast cancer[J]. Bioactive Materials, 2024, 39: 612-629.


7. HyCyte®干细胞细胞成软骨分化培养基:影响因子为16.6

Yang Y, Zhao X, Wang S, et al. Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration[J]. Nature Communications, 2023, 14(1): 7771.


8. HyCyte®细胞产品(U-2OS cell):影响因子为16

Gao Y, Zhu Y, Wang H, et al. Lipid-mediated phase separation of AGO proteins on the ER controls nascent-peptide ubiquitination[J]. Molecular Cell, 2022, 82(7): 1313-1328. e8.


9.HyCyte®细胞产品(L-929,MLE-12):影响因子为16

Lu Q, Ye C, Mao W, Zeng F, Liu Z, Chen R, Cheng X, Gao Y, Wang M, Liu M, Tang S, Song Y. Targeting Senescent Alveolar Type 2 Cells with a Gene-Editable FePt Dual-Atom Catalyst for Mitigating Idiopathic Pulmonary Fibrosis. ACS Nano. 2025 Jul 1;19(25):23162-23176.


10.HyCyte®细胞产品(MC3T3-E1,RAW264.7):影响因子为15.8

Yang X, Fan Y, Liang J, et al. Polyaptamer-Driven Crystallization of Alendronate for Synergistic Osteoporosis Treatment through Osteoclastic Inhibition and Osteogenic Promotion. ACS Nano. 2024;18(33):22431-22443.


11.HyCyte®细胞产品(CT26):影响因子为15.8

Deng W, Wang Y, Wang J, Su Y, Li M, Qu K, Wang Y, Li M. Leveraging Vitamin C to Augment Nanoenabled Photothermal Immunotherapy. ACS Nano. 2025 Mar 26. doi: 10.1021/acsnano.4c17080. Epub ahead of print. PMID: 40138545.


12.HyCyte®RAW264.7细胞和专用培养基:影响因子为14.7

Tong F, Wang Y, Xu Y, Zhou Y, He S, Du Y, Yang W, Lei T, Song Y, Gong T, Gao H. MMP-2-triggered, mitochondria-targeted PROTAC-PDT therapy of breast cancer and brain metastases inhibition. Nat Commun. 2024 Nov 29;15(1):10382.


13.HyCyte®细胞产品(B16-F10, 4T1,CT-26):影响因子为14.3

Fu J, Wu S, Bao N, Wu L, Qu H, Wang Z, Dong H, Wu J, Jin Y. A Universal Strategy of Anti-Tumor mRNA Vaccine by Harnessing "Off-the-Shelf" Immunity. Adv Sci (Weinh). 2025 Feb;12(8):e2401287.

14. HyCyte®细胞产系:影响因子为13.7

Yu X, Feng M, Guo J, et al. MLKL promotes hepatocarcinogenesis through inhibition of AMPK-mediated autophagy[J]. Cell Death & Differentiation, 2024: 1-14.


15.HyCyte®Caco-2细胞和专用培养基:影响因子为13

Jiang B, Peng C, Li X, Sun C, Lu W, Fang Y. Banana Starch Nanoparticles Disrupt the Integrity of the Intestinal Barrier by Opening Tight Junctions in Mice. Small. 2024 Dec 12:e2408298.


16.HyCyte®Caco-2细胞和专用培养基:影响因子为13

Jiang B, Peng C, Li X, Sun C, Lu W, Fang Y. Banana Starch Nanoparticles Disrupt the Integrity of the Intestinal Barrier by Opening Tight Junctions in Mice. Small. 2024 Dec 12:e2408298.


17.HyCyte®细胞产品(HUVEC):影响因子为12.5

Wu D, Wang X, Li R, Wang C, Ren Z, Pan D, Ren P, Hu Y, Xin C, Zhang L. Femtosecond laser-assisted printing of hard magnetic microrobots for swimming upstream in subcentimeter-per-second blood flow. Sci Adv. 2025 Jul 4;11(27):eadw1272.


18. HyCyte®干细胞三系诱导分化产品:影响因子为12.4

Sun Y, Liu Q, Qin Y, et al. Exosomes derived from CD271+ CD56+ bone marrow mesenchymal stem cell subpopoulation identified by single-cell RNA sequencing promote axon regeneration after spinal cord injury[J]. Theranostics, 2024, 14(2): 510.


19. HyCyte®细胞产品(L929,NIH3T3):影响因子为11.2

Teng J, Zhao W, Zhang S, et al. Injectable nanoparticle-crosslinked xyloglucan/ε-poly-l-lysine composite hydrogel with hemostatic, antimicrobial, and angiogenic properties for infected wound healing[J]. Carbohydrate Polymers, 2024: 122102.


20.HyCyte®干细胞三系诱导分化产品:影响因子为10.8

Sun Y, Zhao J, Liu Q, et al. Intranasal delivery of small extracellular vesicles from specific subpopulation of mesenchymal stem cells mitigates traumatic spinal cord injury[J]. Journal of Controlled Release, 2024, 369: 335-350.


21. 原代细胞-小鼠滑膜成纤维细胞(PSMC-C224):影响因子为10.6

Cao H, Li W, Zhang H, et al. Bio-nanoparticles loaded with synovial-derived exosomes ameliorate osteoarthritis progression by modifying the oxidative microenvironment[J]. Journal of Nanobiotechnology, 2024, 22(1): 271.


22.HyCyte®干细胞三系诱导分化产品:影响因子为10.2

Lv Q, Wang Y, Tian W, et al. Exosomal miR-146a-5p derived from human umbilical cord mesenchymal stem cells can alleviate antiphospholipid antibody-induced trophoblast injury and placental dysfunction by regulating the TRAF6/NF-κB axis[J]. Journal of Nanobiotechnology, 2023, 21(1): 419.


23. HyCyte®成骨诱导液产品:影响因子10.2

Chen Y, Wu Y, Guo L, et al. Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis[J]. Journal of Nanobiotechnology, 2023, 21(1): 98.


24.HyCyte®细胞产品(4T1):影响因子为10

Sun Y, Peng X, Guan Y, Su T, Xie Z, Wu Z, Long Y, Zhu H, Shao J, Mai X, Shi X, Wu T, Teng Z, Zhang B, Chen K, Xin X. K2FeO4-Enhanced Photodynamic Therapy of Breast Cancer via In Situ Synthesis of Fe2O3 and O2. Adv Healthc Mater. 2024 Nov 2:e2402827.


25. HyCyte®细胞产品(HUVEC):影响因子为9.8

Gao R, Jiang Z, Wu X, et al. Metabolic regulation of tumor cells exposed to different oxygenated polycyclic aromatic hydrocarbons[J]. Science of The Total Environment, 2024, 907: 167833.


26.HyCyte®细胞产品(AML12):影响因子为9.1

Hong W, Zeng X, Wang H, et al. PGC-1α loss promotes mitochondrial protein lactylation in acetaminophen-induced liver injury via the LDHB-lactate axis[J]. Pharmacological Research, 2024: 107228.


27. HyCyte®双抗(青霉素/链霉素GUSA-R002):影响因子9

Zhou M, He J, Li Y, et al. N6-methyladenosine modification of REG1α facilitates colorectal cancer progression via β-catenin/MYC/LDHA axis mediated glycolytic reprogramming[J]. Cell Death & Disease, 2023, 14(8): 557.


28. HyCyte®HEK-293T细胞株:影响因子9

Zhang H, Zhao Y, Wang J, et al. FBXO7, a tumor suppressor in endometrial carcinoma, suppresses INF2-associated mitochondrial division[J]. Cell Death & Disease, 2023, 14(6): 368.


29. HyCyte®细胞产系:影响因子为8.6

Wang Y, Zhang Y, Chen Y, et al. [18F] AlF-NOTA-PCP2: a novel PET/CT tracer for enhanced PD-L1 heterogeneity imaging and comparative analysis with [18F] AlF-NOTA-WL12 in glioblastoma xenografts[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2024: 1-15.


30. HyCyte®细胞产品(HUVEC):影响因子为8.1

Wang Z, Zhao P, Tian K, et al. TMEM9 promotes lung adenocarcinoma progression via activating the MEK/ERK/STAT3 pathway to induce VEGF expression[J]. Cell Death & Disease, 2024, 15(4): 295.


HyCyte® 血清产品高分文献


1. HyCyte®预筛选胎牛血清:影响因子为37.3

Zheng Z, Zeng X, Zhu Y, et al. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis[J]. Molecular Cancer, 2024, 23(1): 4.


2. HyCyte®预筛选胎牛血清FBP-C520:影响因子为18.9

Li X, Liang X, Fu W, et al. Reversing cancer immunoediting phases with a tumor-activated and optically reinforced immunoscaffold[J]. Bioactive Materials, 2024, 35: 228-241.


3. HyCyte®预筛选胎牛血清:影响因子为15.8

Zeng X, Chen Z, Zhu Y, Liu L, Zhang Z, Xiao Y, Wang Q, Pang S, Zhao F, Xu B, Leng M, Liu X, Hu C, Zeng S, Li F, Xie W, Tan W, Zheng Z. O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma. Drug Resist Updat. 2024 Sep 12;77:101150.


4. HyCyte®预筛选胎牛血清:影响因子为14.3

Hu C, Zheng Z, Pang S, Zhu Y, Jie J, Lai Z, Zeng X, Xiao Y, Chen Z, Zhao J, Du Y, Li F, Wang Q, Tan W. Chimeric SFT2D2-TBX19 Promotes Prostate Cancer Progression by Encoding TBX19-202 Protein and Stabilizing Mitochondrial ATP Synthase through ATP5F1A Phosphorylation. Adv Sci (Weinh). 2024 Nov 14:e2408426. doi: 10.1002/advs.202408426. Epub ahead of print. PMID: 39540264.


5. HyCyte®预筛选胎牛血清:影响因子为5.7

Liu P, Wang Y, Li X, et al. Enhanced lipid biosynthesis in oral squamous cell carcinoma cancer‐associated fibroblasts contributes to tumor progression: Role of IL8/AKT/p‐ACLY axis[J]. Cancer Science, 2024.


6. HyCyte®预筛选胎牛血清与培养基:影响因子3.4

Zhao X, Zheng Z, Chen C, et al. New clerodane diterpenoids from Callicarpa pseudorubella and their antitumor proliferative activity[J]. Fitoterapia, 2024, 174: 105878.


7. HyCyte®预筛选胎牛血清

Liu P, Wang Y, Li X, et al. Enhanced lipid biosynthesis in OSCC cancer associated fibroblasts contributes to tumor progression: role of IL8/AKT/p-ACLY axis[J]. 2023.



Cas9X® 技术服务高分文献

1. Cas9X®基因敲除服务:影响因子为39.3

Ma B, Ju A, Zhang S, et al. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 229.

【ALB in HepG2 was knocked out by Haixing Biosciences using the CRISPR/Cas9 system】


2. Cas9X®基因编辑服务(突变菌的基因改造和筛选):影响因子为26.6

Wu W, Pu Y, Gao S, et al. Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy[J]. Nano-Micro Letters, 2022, 14(1): 1-21.


3. Cas9X®基因敲除服务:影响因子为16.6

Bu J, Zhang Y, Wu S, et al. KK-LC-1 as a therapeutic target to eliminate ALDH+ stem cells in triple negative breast cancer[J]. Nature Communications, 2023, 14(1): 2602.


4. Cas9X®载体:影响因子为15.1

Chen X, Hao Y, Liu Y, et al. NAT10/ac4C/FOXP1 promotes malignant progression and facilitates immunosuppression by reprogramming glycolytic metabolism in cervical cancer[J]. Advanced Science, 2023, 10(32): 2302705.


5. Cas9X®基因敲除服务:影响因子为14.9

Cao X, Zheng J, Zhang R, et al. Live-cell imaging of human apurinic/apyrimidinic endonuclease 1 in the nucleus and nucleolus using a chaperone@ DNA probe[J]. Nucleic Acids Research, 2024: gkae202.


6. AV腺病毒 lncRNA LITTIP: 影响因子14.9

Li T, Wang H, Jiang Y, et al. LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling[J]. International Journal of Oral Science, 2023, 15(1): 33.


7. THP1细胞基因突变:影响因子为14.7

Liang J, Wan Y, Gao J, et al. Erythroid-intrinsic activation of TLR8 impairs erythropoiesis in inherited anemia[J]. Nature Communications, 2024, 15(1): 1-17.


8.Cas9X®基因过表达服务:影响因子为14.5

Fan H, Jiang H, Yu Z, et al. Cisplatin-based miRNA delivery strategy inspired by the circCPNE1/miR-330-3p pathway for oral squamous cell carcinoma[J]. Acta Pharmaceutica Sinica B, 2024.


9. CRlSPR-Cas9:影响因子为14.3

Jia S, Liu W, Zhang M, Wang L, Ren C, Feng C, Zhang T, Lv H, Hou Z, Zou W, Zhang Y, Tong W, Wang J, Chen W. Insufficient Mechanical Loading Downregulates Piezo1 in Chondrocytes and Impairs Fracture Healing Through ApoE-Induced Senescence. Adv Sci (Weinh). 2024 Oct 17:e2400502.


10. Cas9X®基因敲除服务:影响因子为14.3

Wei Y S, Tang W J, Mao P Y, et al. Sexually Dimorphic Response to Hepatic Injury in Newborn Suffering from Intrauterine Growth Restriction[J]. Advanced Science, 2024: 2403095.


11. Cas9X®慢病毒包装:影响因子为14.3

Li C, Qin T, Zhao J, et al. Kdm6a-CNN1 axis orchestrates epigenetic control of trauma-induced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair[J]. Bone Research, 2024, 12(1):


12. Cas9X®基因敲除服务:影响因子为12.8

Yang H H, Jiang H L, Tao J H, et al. Mitochondrial citrate accumulation drives alveolar epithelial cell necroptosis in lipopolysaccharide-induced acute lung injury[J]. Experimental & Molecular Medicine, 2022, 54(11): 2077-2091.


13. Cas9X®基因敲除服务:影响因子为12.478

Liu B, Hua D, Shen L, et al. NPC1 is required for postnatal islet β cell differentiation by maintaining mitochondria turnover[J]. Theranostics, 2024, 14(5): 2058.


14. Cas9X®基因干扰siRNA:影响因子为11.6

Chengtao Sun, Shengqian Deng, Bing Han, Xiaoxiao Han, Yanan Yu, Man Li, Jiayi Lou, Chengping Wen, Jiong Wu, Guoyin Kai,Dihydrotanshinone I Induces Autophagic Cell Death in Ovarian Cancer by Disrupting the SORT1-Mediated Autophagy–Lysosome Pathway[J],Engineering,2025.


15. 腺病毒包装:影响因子为11.4

Liu L, Wang L, Liu L, et al. Acyltransferase zinc finger DHHC-type containing 2 aggravates gastric carcinoma growth by targeting Nrf2 signaling: A mechanism-based multicombination bionic nano-drug therapy[J]. Redox Biology, 2024, 70: 103051.


16.Cas9X®基因干扰siRNA:影响因子为11.6

Chengtao Sun, Shengqian Deng, Bing Han, Xiaoxiao Han, Yanan Yu, Man Li, Jiayi Lou, Chengping Wen, Jiong Wu, Guoyin Kai,Dihydrotanshinone I Induces Autophagic Cell Death in Ovarian Cancer by Disrupting the SORT1-Mediated Autophagy–Lysosome Pathway[J],Engineering,2025.


17. 慢病毒包装:影响因子为10.2

Chen W, Li Z, Yu N, et al. Bone-targeting exosome nanoparticles activate Keap1/Nrf2/GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells[J]. Journal of Nanobiotechnology, 2023, 21(1): 355.


18. 慢病毒过表达载体:影响因子为10.2

Peng W, Xie Y, Luo Z, et al. UTX deletion promotes M2 macrophage polarization by epigenetically regulating endothelial cell-macrophage crosstalk after spinal cord injury[J]. Journal of Nanobiotechnology, 2023, 21(1): 225.


19. shRNA质粒:影响因子为9.3

Li W, Ali T, Zheng C, et al. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression[J]. Journal of neuroinflammation, 2021, 18: 1-19.


20. Cas9X®基因敲除服务:影响因子为9.2

Zhong S, Guo Q, Chen X, et al. The inhibition of YTHDF3/m6A/LRP6 reprograms fatty acid metabolism and suppresses lymph node metastasis in cervical cancer[J]. International Journal of Biological Sciences, 2024, 20(3): 916.


21. Cas9X®基因干扰siRNA:影响因子为9.1

Bian Y, Xu S, Gao Z, et al. m6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/FOXM1 positive feedback loop[J]. Cancer Letters, 2024: 217004.


阅读36
分享