小分子抑制剂⸺推动干细胞技术
图3. Y-27632改善了解离后人ESCs的生存
展望⸺iPSC的瓶颈与下一步
1 Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663-76, PMID: 16904174, https:// doi.org/10.1016/j.cell.2006.07.024.
2 Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, et al. 2019. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther10(1):341, PMID: 31753034, https://doi.org/10.1186/ s13287-019-1455-y.
3 Williams LA, Davis-Dusenbery BN, Eggan KC. 2012. SnapShot: directed differentiation of pluripotent stem cells. Cell149(5):1174-1174.e1, PMID: 22632979, https://doi. org/10.1016/j.cell.2012.05.015.
4 Taylor CJ, Bolton EM, Bradley JA. 2011. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond B Biol Sci 366(1575):2312-22, PMID: 21727137, https://doi.org/10.1098/ rstb.2011.0030.
5 Doss MX, Sachinidis A. 2019. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells8(5):403, PMID: 31052294, https://doi.org/10.3390/cells8050403.
6 Kim JY, Nam Y, Rim YA, Ju JH. 2022. Review of the current trends in clinical trials involving induced pluripotent stem cells. Stem Cell Rev Rep 18(1):142-154, PMID: 34532844, https://doi.org/10.1007/s12015-021-10262-3.
7 Li MD, Atkins H, Bubela T. 2013. The global landscape of stem cell clinical trials. Regen Med 9(1):27-39, PMID: 24236476, https://doi.org/10.2217/rme.13.80.
8 US Food and Drug Administration (FDA).2017. FDA announces comprehensive regenerative medicine policy framework [Press Release]. Silver Spring, MD: FDA, Department of Health and Human Services (HHS).https://www.fda.gov/news-events/press-announcements/fda-announcescomprehensive-regenerative-medicine-policy-framework. [accessed 26 Jan 2023].
9 US Food and Drug Administration (FDA). Statement of Organization, Functions, and Delegations of Authority. [Notice].87 FR 58806, 58806-7 (effective Sep. 16, 2022). https:// www.federalregister.gov/d/2022-20997. [accessed 30 Jan 2023].
10 Murphy SL, Xu J, Kochanek KD, Curtin SC, Arias E. 2017. Deaths: Final data for 2015. Natl Vital Stat Rep 66(6):1-75, PMID: 29235985.
11 World Health Organization (WHO). 2022. Invisible numbers: the true extent of noncommunicable diseases and what to do about them. [Website]. Geneva, Switzerland: Noncommunicable Diseases | WHO. https://www.who.int/teams/noncommunicable-diseases/invisible-numbers. [accessed 23 Jan 2023].
12 Fung M, Yuan Y, Atkins H, Shi Q, Bubela T. 2017. Responsible translation of stem cell research: An assessment of clinical trial registration and publications. Stem Cell Reports 8(5):1190-1201, PMID: 28416287, https://doi.org/10.1016/j. stemcr.2017.03.013.
13 Polaris Market Research. 2021. Induced pluripotent stem cell (iPSC) market share, size, trends, industry analysis report by application (manufacturing, academic research, drug development & discovery, toxicity screening, regenerative medicine); by derived cell; by region, segment & forecast, 2021 – 2028. [Website]. https://www.polarismarketresearch.com/industry-analysis/induced-pluripotent-stem-cell-ipsc-market. [accessed 28 Dec 2022].
14 The Business Research Company. 2022. Induced pluripotent stem cell (iPSC) global market report 2022, by derived cell type, by application, by end-user. [Website]. https://www. researchandmarkets.com/r/mkszf2. [accessed 29 Dec 2022].
15 Grand View Research. 2023. Induced pluripotent stem cells production market size, share & trends analysis report by process, by workflow (cell culture), by product, by application (regenerative medicine), by end-user, by region, and segment forecasts, 2022 – 2030. [Website]. https:// www.grandviewresearch.com/industry-analysis/inducedpluripotent-stem-cells-production-market-report. [accessed 18 Jan 2023].
16 Chen AK, Reuveny S, Oh SK. 2013. Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv31(7):1032-46, PMID: 23531528, https://doi. org/10.1016/j.biotechadv.2013.03.006.
17 Chen Y, Tristan CA, Chen L, Jovanovic VM, Malley C, et al. 2021. A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. Nat Methods 18(5):528-541, PMID: 33941937, https://doi.org/10.1038/s41592-021-01126-2.
18 Tristan CA, Hong H, Jethmalani Y, Chen Y, Weber C, et al. 2023. Efficient and safe single-cell cloning of human pluripotent stem cells using the CEPT cocktail. Nat Protoc 18(1):58-80, PMID: 36261632, https://doi.org/10.1038/s41596-022-00753-z.
19 Bender E. 2021. Stem-cell start-ups seek to crack the massproduction problem. Nature 597(7878): pp. pages 20-21, https://doi.org/10.1038/d41586-021-02627-y.
20 Chen KG, Mallon BS, McKay RD, Robey PG. 2014. Human pluripotent stem cell culture: considerations for maintenance, expansion, and therapeutics. Cell Stem Cell 14(1):13-26, PMID: FUJIFILM Wako Laboratory Chemicals website https://labchem-wako.fujifilm.com FUJIFILM Wako Chemicals U.S.A. Corporation 1600 Bellwood Road, Richmond, VA 23237, U.S.A. Toll-Free (U.S. only): +1 877 714 1920 Tel: +1 804 271 7677 Fax: +1 804 271 7791 wkuslabchem@fujifilm.com 24388173, https://doi.org/10.1016/j.stem.2013.12.005.
21 Vernardis SI, Terzoudis K, Panoskaltsis N, Mantalaris A. 2017. Human embryonic and induced pluripotent stem cells maintain phenotype but alter their metabolism after exposure to ROCK inhibitor. Sci Rep 7:42138, PMID: 28165055, https:// doi.org/10.1038/srep42138.
22 Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, Rodríguez-Fernández S, López-Baltar I, et al. 2021. Tips and tricks for successfully culturing and adapting human induced pluripotent stem cells. Mol Ther Methods Clin Dev 23:569-581, PMID: 34901305, https://doi.org/10.1016/j.omtm.2021.10.013.
23 Claassen DA, Desler MM, Rizzino A. 2009. ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol Reprod Dev76(8):722-32, PMID: 19235204, https:// doi.org/10.1002/mrd.21021.
24 Walker A, Su H, Conti MA, Harb N, Adelstein RS, Sato N. 2010. Non-muscle myosin II regulates survival threshold of pluripotent stem cells. Nat Commun 1:71, PMID: 20842192, https://doi.org/10.1038/ncomms1074.
25 Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, et al. 2000. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57(5):976- 83, PMID: 10779382, https://molpharm.aspetjournals.org/ content/57/5/976.long.
26 Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, et al. 2007. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25(6):681-6, PMID: 17529971, https://doi.org/10.1038/nbt1310.
27 Chen Y, Tristan CA, Chen L, Jovanovic VM, Malley C, et al. 2019. A versatile polypharmacology platform promotes cytoprotection and viability of human pluripotent and differentiated cells. bioRxiv [Preprint] 815761, https://doi. org/10.1101/815761. Update in Nat Methods18(5):528-541, PMID: 33941937, https://doi.org/10.1038/s41592-021-01126-2.
28 Kurosawa H. 2012. Application of Rho-associated protein kinase (ROCK) inhibitor to human pluripotent stem cells.J Biosci Bioeng 114(6):577-81, PMID: 22898436, https://doi. org/10.1016/j.jbiosc.2012.07.013.
29 Chen YT, Vojkovsky T, Fang X, Pocas JR, Grant W, et al. 2011. Asymmetric synthesis of potent chroman-based Rho kinase (ROCK-II) inhibitors. Med Chem Commun 2:73–75, https://doi. org/10.1039/C0MD00194E.
30 Tristan CA, Ormanoglu P, Slamecka J, Malley C, Chu PH, et al. 2020. Robotic high-throughput biomanufacturing and functional differentiation of human pluripotent stem cells. bioRxiv [Preprint]3:2020.08.03.235242, https://doi.
org/10.1101/2020.08.03.235242. Update in Stem Cell Reports 16(12):3076-3092, PMID: 32793899, https://doi.org/10.1016/j. stemcr.2021.11.004.
31 Jovanovic VM, Malley C, Tristan CA, Ryu S, Chu PH, et al. 2021. Directed differentiation of human pluripotent stem cells into radial glia and astrocytes bypasses neurogenesis. bioRxiv [Preprint] 2021.08.23.457423, https://doi. org/10.1101/2021.08.23.457423.
32 Deng T, Tristan CA, Weber C, Chu PH, Ryu S, et al. Scalable generation of pseudo-unipolar sensory neurons from human pluripotent stem cells. bioRxiv [Preprint] 2022.03.24.485622, https://doi.org/10.1101/2022.03.24.485622.
33 Ryu S, Weber C, Chu PH, Tristan CA, Ernest B. Enhancing the fitness of embryoid bodies and organoids by chemical cytoprotection. bioRxiv [Preprint] 2022.03.21.485225, https:// doi.org/10.1101/2022.03.21.485225.
34 Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, et al. 2019. Human iPSC banking: barriers and opportunities. J Biomed Sci 26(1):87, PMID: 31660969, https://doi.org/10.1186/s12929- 019-0578-x.
35 Slamecka J, Tristan CA, Ryu S, Chu PH, Weber C, et al. 2022. A comprehensive roadmap of human placental development in vitro. bioRxiv [Preprint] 2022.04.07.487558, https://doi. org/10.1101/2022.04.07.487558.